Thermochimica Acta, 23 (1978) 192-195 © Elsevier Scientific Publishing Company, Amsterdam ~ Printed in The Netherlands

Note

Enthalpy of formation of L-serine in the solid state

RAPHAEL SABBAH and MARC LAFFITTE

Centre de Recherches de Microcalorimètrie et de Thermochimie du CNRS, 26, rue du 141ème R.I.A., 13003 Marseille (France) (Received 28 March 1977)

Carrying on our studies on thermochemical properties of nitrogen compounds, we report here the enthalpy of combustion and formation of crystalline L-serine. Despite its biological importance, no thermochemical data have been reported for the compound except in the paper of Hutchens et al.¹ where an estimated value of $\Delta H_{\rm f}^0$ (c, 298.15 K) is given. Such data will be necessary if quantitative studies on energetics of biochemical reactions are made.

EXPERIMENTAL

Apparatus and procedure

The apparatus and experimental procedure are similar to those described previously² except the outer jacket temperature which is now controlled by an electronic regulator to ± 0.002 °C at 24.78 °C. The samples were burnt in a Parr 1004 C stainless-steel combustion bomb with platinum lining. The internal volume of the bomb is 350.6 ml. This bomb was initially filled with oxygen at 30 atm. Air Liquide ultrahigh purity grade oxygen (N 45) was used without further treatment. The sample pellets were weighed to an accuracy better than 0.005 mg and corrections for air buoyancy applied.

10 ml of water were placed in the bomb and a cotton thread was used as fuse, its heat of combustion has been found to be $-(16.502 \pm 0.041)$ kJ g⁻¹ (mean and standard deviation).

The extent of combustion was based on the mass of the sample. All calculations, including conversion of time and temperature measurements to initial and final temperature, correction for heat exchange between calorimeter and jacket and reduction to the standard state, were carried out with a computer. The computer programme followed the procedure of Hubbard et al.³.

Materials

L-serine was obtained from Koch-Light and had a claimed purity better than

99%. It was further purified by recrystallization from its aqueous solution and dried under vacuum ($P \# 10^{-2}$ Torr) until the weight loss of the sample was negligible.

The calorimeter was calibrated with benzoic acid, NBS sample 39i, which had a heat of combustion ΔU_c^0 (c) = - (26.414 ± 0.003) kJ g⁻¹.

RESULTS

Units of measure and auxiliary quantities

All data reported are based on the 1973 atomic weights⁴. For reducing weights in air to weights in vacuum and correcting to standard states, the values for density ρ , specific heat cp and $(\partial u/\partial p)_T$ for the substances were summarized in Table 1.

TABLE I

Substance	ρ(g ml ⁻¹)	cp(J K ¹ g ⁻¹)	- (du dp)T (Jann'g')•
L-serine	1.561	1.322	(0.013)
Benzoic acid	1.320	1.209	0.012
Fuse	1.5	1.7	0.029

PHYSICAL PROPERTIES FOR THE SUBSTANCES AT 298.15 K

1 atm 101.325 k Pa.

The density of L-serine was measured with a pycnometer filled with oil. The specific heat value of L-serine was measured using the drop method and a Tian-Calvet calorimeter. The value of $(\partial u/\partial p)_T$ in parentheses is estimated. All other values are taken from the literature.

Calorimetric results

The apparent energy equivalent of the calorimeter U (calor.), was determined from twelve calibration runs. The average value was (15108.2 \pm 1.7) J K⁻¹ where the uncertainty is expressed as the standard deviation of the mean. Ten satisfactory combustion experiments were obtained for L-serine, some of them were carried out in the presence of benzoic acid as an auxiliary material. No difference was observed in the results (Table 2). Another observation was done. Since the rise of temperature ΔT for a run is included in the value of ΔT obtained in calibration experiments, there is apparently no effect on the result if initial and final temperatures are not the same for all runs.

Derived results

Values of the enthalpy of combustion ΔH_c^0 (c, 298.15 K) derived from the mass of the sample and current best values⁵ of the enthalpies of formation of gaseous carbon dioxide $[\Delta H_t^0$ (g, 298.15 K)] = - (393.51 ± 0.13) kJ mol⁻¹ and liquid water

3
E)
그
2
È

SUMMARY OF COMBUSITON LAPITIMENTS FOR L-SERING

(1448.83 :± 0.18) kJ mol-1	- (1448.21 🗄 0.18) kJ mol-i	
Ξ	1	
lons of the means: /1U.º (c, 298.15 K)	/11/0° (c, 298.15 K)	ALL DAME AND TELEVISION
Mean values and standard deviat		

) elliv	, 298.15 K)	(732.	73 :1: 0.28)	kJ mol ⁻¹					
m(sub) (g)	анх хир (R)) m(col) (g)	(8) (1)	n(HNO3) (nol)	0, (°C)	0r (°C)	лт (K)	- <i>AU</i> imr (1)	(C)		,1Ue ⁰ (kJ mol ⁻¹	/111,0 (KJ 111al-1	(1110 (1110)1)
1.710698 1.228715 1.801381		0.001574 0.001476 0.001506 0.001506	3.816444 3.563886 3.563851 3.563851	9.80 10-4 6.67 9.62 9.24	23.47449 23.87852 23.47441 23.47441	25.04038 25.00282 25.12053 25.12053	1.56400 1.12312 1.64596 1.62247	23714 17029 24958 24601	***	8682	1449.58 1448.96 1449.14 1449.14	1448.96 1448.34 1448.52 1447.48	731.97 732.59 732.41 733.45
1.942814 1.653147 1.663147 1.645001 1.355780 1.738167	0.302879 0.354147 0.242974 0.229926	0.001461 0.001463 0.001668 0.001642 0.001623 0.001623	3.563772 3.563772 3.816426 3.816426 3.816550 3.816595 3.816595	9.60 9.96 9.96 8.23 8.90 10.15	23.29548 23.55134 23.29548 23.29548 23.34674 23.29540	25.07141 25.0484 25.04884 25.01484 25.01444 25.01444	1.77348 1.49143 2.04820 2.12060 1.66448 1.98932	26891 22614 31058 32156 25238 30165	24 22 8028 9378 6445 6097	8 19 10 18 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10	1448.13 1448.67 1448.67 1448.37 1449.87 1448.87	1447.51 1447.97 1448.05 1447.75 1447.75 1448.25	733.43 732.96 732.89 733.19 731.67 732.68

* 181 - heat of combustion of fuse and auxiliary material, 182 - corrections to standard states.

: . •

.

.

.

.

 $[\Delta H_f^0$ (1, 298.15 K)] = - (285.830 ± 0.042) kJ mol⁻¹ were combined to derive values of the enthalpy of formation in the condensed state ΔH_f^0 (c, 298.15 K). These are listed in Table 2.

ACKNOWLEDGMENT

•

The authors thank Mr. Nguon Song Ngauv for his density measurements.

REFERENCES

- 1 J. O. Hutchens, A. G. Cole and J. W. Stout, J. Biol. Chem., 239 (1964) 4194.
- 2 a. M. Nabavian, R. Sabbah, R. Chastel and M. Laffitte, J. Chim. Phys., 74 (1977) 115.
- b. N. S. Ngauv, R. Sabbah and M. Laffitte, Thermochim. Acta, 20 (1977) 371.
- 3 W. N. Hubbard, D. W. Scott, G. Waddington, in F. D. Rossini (Ed.), Experimental Thermochemistry, vol. 1, Interscience, New York, 1956, ch. 5.
- 4 Atomic weights of the elements, 1973, Pure Appl. Chem., 37 (1974) 591.
- 5 ICSU-CODATA Task Group, Report on key values for thermodynamics, J. Chem. Thermodyn., 7 (1975) 1.

. .